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Self-similarity in ultrafast nonlinear optics

Recent developments in nonlinear optics have led to the discovery of a new class of ultrashort pulse, the

‘optical similariton’. Optical similaritons arise when the interaction of nonlinearity, dispersion and gain in a

high-power fibre amplifier causes the shape of an arbitrary input pulse to converge asymptotically to a

pulse whose shape is self-similar. In comparison with optical solitons, which rely on a delicate balance of

nonlinearity and anomalous dispersion and which can become unstable with increasing intensity,

similaritons are more robust at high pulse powers. The simplicity and widespread availability of the

components needed to build a self-similar amplifier capable of producing optical similaritons provides a

convenient experimental platform to explore the fundamental nature of dynamical self-similarity. Here, we

provide an overview of self-similar pulse propagation and scaling in optical fibre amplifiers, and their use in

the development of high-power ultrafast optical sources, pulse synthesis and all-optical pulse regeneration.
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Many natural phenomena exhibit self-similarity, reproducing
themselves on different temporal and/or spatial scales. Although
similarity and scaling laws in physics have been studied since
the time of Galileo1, their application in the modern era dates
to the early years of the twentieth century, with an influential
correspondence in Nature initiated by Lord Rayleigh2–5 and the
development of formal dimensional analysis by Buckingham6,7. The
fundamental premise of dimensional analysis is that physical laws
should be independent of the particular choice of units (be they
metres, miles, furlongs or light years), and that it must be possible
to express them using dimensionless parameters. Dimensional
analysis is particularly powerful in reducing the number of degrees
of freedom needed to describe a particular physical system, and
in providing a systematic procedure to derive scaling relations
between the key parameters involved. It thus provides a general
technique for analysing phenomena across very different fields of
physics, and even Rayleigh’s brief report2 includes a remarkable
variety of examples from the resolving power of an optical
microscope to the acoustic properties of the aeolian harp.

The use of scaling and normalization are common in the
mathematical analysis of physical problems, but the existence of
universal laws governing self-similar scale invariance in a system
has a more profound fundamental significance, as it reveals the
presence of internal structure and symmetry8. The basic concept of
similar triangles is of course very familiar, but more sophisticated

examples of geometrical self-similarity are widespread and can be
found in settings ranging from natural branching patterns and
coastlines9, to the nodal properties of complex networks such as
the World Wide Web10.

As well as these examples involving spatial geometry, self-
similarity also occurs in many dynamical problems as a natural
stage in the temporal evolution of a system from a particular initial
state. One of the most famous illustrations of this type concerns the
evolution of the radius of a blast wave of a nuclear explosion, first
analysed by the British physicist G. I. Taylor in the 1940s11. Although
a nuclear weapon is a very complex device, Taylor’s insight was
to realize that the huge energy release from the explosion would
result in the formation of a spherical shock wave whose self-similar
expansion could be described in terms of only four dimensional
quantities: the elapsed time t , the time-dependent shock-wave
radius R(t), the ambient air density ρ and the energy released E.

The application of dimensional analysis to this problem
seeks to combine these four quantities to form dimensionless
‘similarity parameters’, and it is easy to see here how they combine
into one such parameter: θ = ρR5/Et2. It follows immediately
that the blast-wave radius expands according to the scaling law
R(t) = θ1/5(Et2/ρ)1/5, where the similarity variable θ plays the role
of a proportionality constant. In fact, numerical computation yields
a specific value for θ (approximately unity) and Taylor himself was
able to use declassified images of the 1945 Trinity explosion to
quantitatively confirm this scaling hypothesis12.

SELF-SIMILAR DYNAMICS

The blast-wave example is one where simple dimensional analysis
works particularly well, but more sophisticated methods also exist
to determine self-similar solutions for more complex systems.
Such formal similarity techniques extend the toolbox available
to mathematical physicists, and are of particular importance in
analysing nonlinear problems described by partial differential
equations — well known to be notoriously difficult to solve exactly.
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Figure 1 Graphical representation of generic similariton characteristics.
Top: parabolic intensity profile (left axis) and linear chirp (right axis). Bottom: the
intensity profile on a logarithmic scale.

For such cases, the approach is to reduce the degrees of freedom
of the system by reformulating the problem in terms of similarity
variables (where they exist) so that the original problem of solving
partial differential equations can be recast into a simplified problem
involving ordinary differential equations13,14.

Although similarity techniques are common in fields such as
hydrodynamics and plasma physics, their use in optics has not
been widespread. Some significant studies have nonetheless been
carried out, including research into the nonlinear dynamics of
a range of lasers and optoelectronic devices15–17, nonlinear self-
action and collapse processes18–22, stimulated Raman scattering23,
fractal structure excitation in soliton-supporting systems24,25 and
spatial fractal pattern formation26–29. Other studies with a materials
emphasis have demonstrated self-similarity in the growth of Hill
gratings30 and the evolution of self-written waveguides31,32.

A particular area of optics research where self-similar dynamical
effects have attracted much recent interest is the study of nonlinear
pulse propagation in optical fibre amplifiers. Fibre amplifiers are
key components in optical telecommunications systems and high-
power ultrafast source development, but are generally configured
to operate such that nonlinear effects are negligible. However,
recent results have demonstrated a fundamentally new operating
regime where nonlinear propagation is, in fact, exploited to
generate a particular class of ultrashort parabolic pulse that evolves
self-similarly as it is amplified33–36. As is often the case, optical
systems provide convenient experimental testbeds with which to
study physical processes of widespread interest, and the study of
dynamical self-similarity in ultrafast optics is developing into an
increasingly active field of research.

CHARACTERISTICS AND SCALING OF OPTICAL SIMILARITONS

High-power ultrashort-pulse propagation in optical fibres is well
known to be associated with distortions and break-up effects due to

the interaction of the fibre nonlinearity and dispersion37. Although
in the anomalous-dispersion regime of a fibre these effects can
balance and yield soliton propagation38,39, fundamental soliton
stability exists at only one particular power level, and propagation
at higher power excites higher-order solitons, which are sensitive
to perturbation and break-up through soliton fission40,41. High-
power propagation in the normal-dispersion regime is also subject
to instability through optical wave breaking that develops on the
temporal pulse envelope after a characteristic distance that depends
on the initial pulse shape42,43. These distortions limit the energy
of ultrashort pulses that can propagate in an optical material,
and are particularly detrimental for the development of high-gain
fibre amplifiers.

In 1993, however, Anderson et al. showed that high-power pulse
propagation in the normal-dispersion regime was not inevitably
associated with optical wave breaking and, in fact, wave breaking
could be completely avoided for a particular class of pulse
possessing a parabolic intensity profile and a linear frequency
chirp44. This key physical insight was followed up in 1996 by
Tamura and Nakazawa45, who showed numerically that ultrashort
pulses injected into a normal-dispersion fibre amplifier seemed to
naturally evolve towards the parabolic-pulse profile and, moreover,
retained their parabolic shape even as they continued to be
amplified to high power. Tamura and Nakazawa attempted to verify
these results experimentally, but the available pulse diagnostic
techniques did not allow the generation of parabolic pulses to be
conclusively confirmed.

The unambiguous experimental observation of parabolic-pulse
generation was first reported by Fermann et al.33 in 2000 in
an ytterbium-doped fibre amplifier with normal dispersion at
1.06 µm. These measurements were compelling because the use
of the ultrashort-pulse measurement technique of frequency-
resolved optical gating (FROG) invented during the 1990s provided
experimental access to the complex field of the parabolic pulse46.
As well as representing a major experimental advance, the results
in Fermann et al. also applied theoretical analysis on the basis of
symmetry reduction to the nonlinear Schrödinger equation (NLSE)
with gain, formally demonstrating the self-similar nature of the
generated parabolic pulses.

A major result of this analysis was to show that the self-
similar parabolic pulse is a rigorously asymptotic solution to
the NLSE with gain, representing a type of nonlinear ‘attractor’
towards which any arbitrarily shaped input pulse of given energy
would converge with sufficient distance. By analogy with the
well-known solitary-wave behaviour of solitons, these self-similar
parabolic pulses have come to be known as similaritons34; in
fact, solitons themselves can also be interpreted as an example of
self-similarity8. Further application of similarity techniques also
yielded a quantitative description of the important intermediate-
asymptotic regime, where the fine structure due to the initial
conditions has disappeared yet the system has not reached its
asymptotic state. This was a particularly significant advance from
a fundamental viewpoint as it demonstrated the presence of
similarity characteristics on different scales in this system.

The analysis yields closed-form expressions of particular
simplicity for the self-similar parabolic-pulse characteristics that we
describe below making reference to Fig. 1 (ref. 35). The results are
obtained assuming that a fibre amplifier can be described by the
NLSE with gain expressed in the following (dimensional) form:
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Here, Ψ (z, T) (W1/2) is the slowly varying pulse envelope in
a frame comoving at the envelope group velocity, β2 (ps2 m−1)
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and γ (W−1 m−1) are the fibre dispersion and Kerr nonlinear
coefficients respectively, and g (m−1) is the amplifier-distributed
gain coefficient. Figure 1 shows the temporal pulse characteristics
on both linear and logarithmic scales, with the former illustrating
the parabolic nature of the central core and the latter showing
the presence of low-amplitude wings. Writing the field as
Ψ (z,T) = A(z,T)exp(iΦ(z,T)) gives the corresponding closed-
form analytic expressions in terms of the amplitude and phase
A and Φ respectively. The analytic expression for the amplitude
A(z, T) and the phase Φ(z, T) of the asymptotic solution
(|T| ≤ Tp(z)) is
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where Uin is the input pulse energy, and Tp and A0 characterize
the parabolic-pulse width and amplitude respectively. The analytic
expression for the amplitude Aw(z,T) and the phase Φw(z,T) of
the intermediate-asymptotic solution (|T| > Tp(z)) is
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ϕ0 and ϕw0 are arbitrary constants, and the intermediate-
asymptotic scaling parameters Λ and Aw0 are determined
numerically for particular initial conditions. The instantaneous
frequency chirp across the pulse envelope is
Ω (z, T) = −dΦ(z, T)/dT . The corresponding spectrum in
the asymptotic limit is also parabolic and possesses a quadratic
spectral phase.

The asymptotic temporal characteristics correspond to a strictly
parabolic-pulse core with compact support. Although presented
here for the case of a constant gain, these characteristics are, in
fact, also observed under more arbitrary conditions when the
gain varies longitudinally along the amplifier length34,47,48. The
asymptotic nature of the solution is reflected in the fact that the
amplitude and width scaling (in both the time and frequency
domains) depends only on the amplifier parameters and the input
pulse energy, and is independent of the input pulse shape. We also
note that the pulse chirp is independent of propagation distance, a
property of particular significance for optical compressor design. In
the intermediate-asymptotic regime, the reshaping of any arbitrary
input pulse generates exponentially decaying low-amplitude wings,
but the scaling of the intermediate characteristics with distance
is more complex, and does depend on the exact input pulse
shape used. The scaling constants in this case must be determined
numerically. The intermediate-asymptotic spectral characteristics
are also complex, exhibiting both deviations from the ideal
parabolic form and complex oscillatory structure whose relative
energy contribution decreases as the spectrum evolves towards the
asymptotic limit35.

Figure 2 illustrates explicitly the attractive nature of the
asymptotic parabolic-pulse solution. Here, we show numerical
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Figure 2 Phase-space portrait of different evolution trajectories of optical
pulses in a self-similar amplifier. The results show the response of a 5-m
normal-dispersion fibre amplifier to hyperbolic secant input pulses with durations
(full-width at half-maximum) in the range 100 fs–1 ps. With fixed input pulse
energy, all trajectories are attracted to the asymptotic sink. The phase-space
variables X and Y are respectively calculated from the ratio of the evolving r.m.s.
temporal and spectral widths relative to the corresponding r.m.s. widths of the
expected asymptotic parabolic-pulse solution at the same distance. Specifically,
for a propagation distance z, the r.m.s. temporal width is given by
1τasym (z )= (1/

√
5)

√
γβ2/2(6/g )A0exp(gz/3) and the r.m.s. spectral width is

given by 2π1νasym (z )= (1/
√
5)

√
2γ/β2A0exp(gz/3).

simulation results calculating the evolution of 100-pJ input pulses
with durations varying over the range 100 fs–1 ps in a 5 m amplifier
with β2 = +25 ps2 km−1, γ = 5 W−1 km−1 and g = 1.92 m−1. The
convergence to the asymptotic solution with propagation can be
conveniently examined in a phase-space representation in terms of
the ratios of the r.m.s. temporal and spectral widths relative to the
widths expected for an asymptotic similariton pulse at the same
distance (see the caption for definitions). Using this representation,
we see that, although different input pulses do follow different
evolution trajectories, they nonetheless are all attracted to the
asymptotic parabolic-pulse solution with sufficient propagation.

Physically, the differences in the evolution trajectories
arise because pulses of different duration experience different
contributions from dispersive and nonlinear effects during the
initial propagation phase. For practical purposes, it is important
to optimally match the input pulse and amplifier parameters,
and useful practical guidelines have been developed35,49. Studies
have also examined the influence of the initial pulse shape on the
evolution trajectory, and have shown that even quasi-rectangular
supergaussian pulses evolve to the self-similar parabolic regime
with sufficient propagation35. Significantly, all of the energy of the
input pulse is retained in the asymptotic solution, in contrast to
soliton propagation where dispersive wave radiation is shed from
non-ideal input pulses37.

The universality of the attractive evolution towards the self-
similar profile has also recently been confirmed through theoretical
analysis50. Related numerical studies have also clarified that
although the asymptotic solution always corresponds to a linearly
chirped parabolic similariton, parabolic pulses and similaritons
are not always synonyms, because an injected parabolic pulse
without the appropriate initial chirp will undergo non-self-
similar evolution and follow its own particular trajectory into the
asymptotic regime49.
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Self-similar evolution in normal-dispersion amplifier

Soliton fission in anomalous-dispersion amplifier
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Figure 3 Simulated pulse evolution of propagation in fibre amplifiers comparing
self-similar evolution with soliton fission. a,b, Normal (a) and anomalous (b)
dispersion using parameters typical of realistic Yb- and Er-doped gain media
respectively. The figures are false-colour representations (on a logarithmic scale) of
the pulse temporal intensity and power spectrum. The dispersion, nonlinearity and
gain are a, β2 = +25 ps2 km−1, γ = 5W−1 km−1, g= 1.92m−1 (integrated gain
25 dB) and b, β2 = −25 ps2 km−1, γ = 5W−1 km−1, g= 1.54m−1 (integrated gain
20 dB). The input pulse had a hyperbolic secant profile and 12-pJ energy. These
results illustrate both the fundamental properties and practical advantages of
self-similar amplification.

In contrast to other forms of nonlinear fibre propagation,
a feature of the self-similar regime is that both the temporal
and spectral width increase exponentially and monotonically
with propagation. Figure 3 shows this explicitly, using numerical
simulations to compare the evolution of a 300-fs pulse in
fibre amplifiers with normal (Fig. 3a) and anomalous (Fig. 3b)
dispersion. The simulations are based on the NLSE with gain
and the addition of stimulated Raman scattering in the fused-
silica host material to model realistic perturbative effects37. The
parameters are given in the caption and correspond to realistic
current technology.

The figure clearly shows the difference between amplification
with normal and anomalous dispersion. With normal dispersion
and self-similar dynamics, amplification is associated with the
simultaneous increase in both temporal and spectral widths and the
absence of any wave breaking or pulse distortion. In contrast, for
an amplifier with the same gain yet with anomalous dispersion, as
the pulse energy increases with amplification, instabilities become
apparent and the pulse breaks up owing to the effect of soliton
fission. In this case, both the pulse temporal and spectral structure
is complex and the output characteristics would be undesirable for
many applications.

Note that the soliton fission observed in the anomalous-
dispersion regime is induced by stimulated Raman scattering,
but this perturbation has negligible effect on the evolution in
the normal-dispersion regime where soliton fission cannot occur.
Indeed, it is even possible to exploit Raman scattering in fibres as

a gain mechanism to generate parabolic pulses51,52. Nonetheless,
under certain conditions, Raman and other effects can perturb
the self-similar propagation, and studies have been carried out to
determine the practical limitations of self-similar amplification.
The results indicate that, although pulse shape fluctuations are
generally negligible53, Raman gain and the effect of the finite
bandwidth of the amplifying transition can impair the amplified
pulse quality and limit achievable pulse energies54–57. In addition,
whereas third-order dispersion effects are also often negligible58,
they can be significant for the broadest spectra, although efficient
compensation techniques have recently been developed59.

EXPERIMENTAL ASYMPTOTICS

We consider the practical application of self-similar amplifiers more
in the next section, but at this stage we describe experiments
where we have examined their fundamental scaling properties using
amplifiers operating around the telecommunications wavelength
of 1,550 nm. Particular aims of these experiments were to develop
convenient self-similar amplifier configurations using only readily
available and relatively inexpensive fibre components, and to use a
high-dynamic-range FROG set-up for detailed characterization.

In one experiment using a self-similar amplifier based on
Raman gain in fused silica, the asymptotic nature of the generated
parabolic pulses was explicitly verified by injecting a range of
different input pulses, and examining the output pulses in each
case60. The measured output pulse characteristics were invariant
with input pulse duration and profile, being determined only
by the amplifier parameters and input pulse energy. In another
experiment, the evolution towards the asymptotic regime was
explicitly examined in an erbium fibre amplifier61. Figure 4a
shows simulations illustrating the expected amplification and
reshaping of a 1.4-ps hyperbolic secant input pulse to a parabolic
similariton for this system when operated at a gain of 13.6 dB.
Corresponding experiments were then carried out by constructing
such an amplifier and cutting it back in 50-cm segments to directly
measure the pulse evolution. A feature of these results of particular
experimental interest is the characterization of the pulse electric
field over an intensity dynamic range of 40 dB, and with the
possibility to resolve sub-100-fs structure over a 20-ps timebase.
The measurements are amongst some of the most demanding ever
made in ultrafast optics, and the results shown in Fig. 4b are
in remarkable agreement with simulations. At the intermediate
distance of 7 m, Fig. 4c compares experiment and simulation on
a logarithmic scale to explicitly show the presence of intermediate-
asymptotic wings about the central parabolic-pulse core. Further
experiments have shown how the relative energy in the wings
decreases as the pulse enters the asymptotic regime, and represent
what is, to our knowledge, the first experimental observation of
intermediate-asymptotic self-similar dynamics in optics61.

PRACTICAL SELF-SIMILAR AMPLIFIERS

In parallel with the fundamentally oriented studies described
above, the scaling properties of parabolic pulses have been
applied to the development of a new generation of optical fibre
amplifier. From a technological viewpoint, self-similar amplifiers
possess a number of very attractive features. In common with
the well-known technique of chirped-pulse amplification (CPA),
catastrophic pulse break-up due to excessive nonlinear phase shifts
is avoided62. However, in contrast to CPA where the aim is to avoid
nonlinearity by dispersive pre-stretching before amplification, a
self-similar amplifier actively exploits nonlinearity, allowing for
the very attractive possibility of obtaining output pulses after
recompression that are actually shorter than the initial input pulse.
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Figure 4 Similariton evolution in a 9-m-long erbium fibre amplifier. a,b, Simulation (a) and experimental (b) results. c, Detail of the similariton intensity and chirp after 7-m
propagation. The shading distinguishes the intermediate-asymptotic wings from the parabolic similariton core. Adapted from ref. 61.

Although gain-bandwidth limitations typically perturb
self-similar spectral broadening at pulse energies exceeding the
microjoule level, similariton amplifiers present a convenient
alternative to more complex CPA systems below this limit55.
Moreover, the existence of analytic design criteria for self-similar
amplifiers makes it straightforward to tailor system design to
a wide range of input pulses and amplifier types. Specifically,
the fact that the asymptotic pulse duration and chirp depend
only on the input pulse energy makes the amplification process
insensitive to a wide class of seed-pulse instabilities. As a result,
practical self-similar amplifiers have been demonstrated using
ytterbium, erbium and Raman gain media, seed pulses in the
range 180 fs–10 ps, fibre lengths in the range 1.2 m–5.3 km
and gains varying from 14–32 dB (refs 33,51,53,63–66). The
possibility to obtain amplified pulse energies exceeding 1 µJ
in an environmentally stable and polarization-maintaining
configuration has been a significant recent demonstration67.
Another important result has been the use of passively mode-locked
vertical-external-cavity surface-emitting semiconductor lasers as
the primary master-oscillator seed-pulse source68.

The fact that the output pulse chirp depends only on
the amplifier gain and dispersion considerably simplifies the
post-compressor design, and high-quality compressed pulses
in the 100-fs regime with megawatt peak powers have been
obtained65,67. An exciting development has been the application
of the novel dispersion properties of photonic bandgap optical
fibre69 to replace the use of bulk gratings in the compression
stage, allowing the realization of an all-fibre format source of
∼200-fs pulses around 1,550 nm (ref. 61). Figure 5 shows results
obtained with such a system, showing an electron micrograph
of a typical bandgap-fibre used (Fig. 5a) and the high-quality
compressed pulses obtained (Fig. 5b). A more recent experiment

has developed this system further, combining self-similar dynamics
with higher-order soliton propagation to develop a hybrid
similariton–soliton system yielding pulses as short as 20 fs (ref. 70).
At the operating wavelength of 1,550 nm, this pulse duration
represents only four optical cycles, and FROG characterization
enables the reconstruction of the electric field to explicitly illustrate
their few-cycle nature as shown in Fig. 5c.

THE ‘SIMILARITON LASER’

The development of any new optical amplifier technology
invariably suggests application in a laser, and self-similar dynamics
are no exception. The combination of self-similar propagation
with optical feedback has been studied both theoretically and
experimentally, and promises a new generation of fibre lasers that
overcome existing power limitations of soliton mode-locking71–76.
Although self-similar evolution naturally presents many advantages
in the design of fibre lasers, the possibility of observing self-similar
dynamics in solid-state mode-locked lasers such as Ti:sapphire
has also been considered77. Significantly, this has motivated
work on exploiting normal-group-velocity-dispersion propagation
dynamics to extend solid-state oscillator systems to the microjoule
regime, and on more general considerations of pulse-shaping
mechanisms in this regime78–80.

GHZ SIMILARITONS

In parallel with research into the generation of high-power
ultrashort pulses, self-similar propagation effects have also
been studied at the much lower powers associated with
telecommunications systems. The interest here is not so
much in the power scaling, but in the use of the unique
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Figure 5 Few-cycle pulse generation around 1,550 nm through the combination of nonlinear similariton and soliton dynamics. a, Electron micrograph of a typical hollow-core
photonic bandgap fibre suitable for linear chirp compensation around 1,550 nm. b, High-quality pulses of around 200-fs duration after using this fibre to compress the
linearly chirped parabolic similaritons generated in an erbium-doped fibre amplifier. c, Further nonlinear compression of the pulses to the few-cycle regime by exploiting
nonlinear soliton compression to obtain 20-fs pulses, representing around four optical cycles at this wavelength. Part c adapted from ref. 70.

asymptotic properties of high-repetition-rate parabolic pulses for
manipulation and shaping applications. The crucial first step here
was the generation of GHz-repetition-rate parabolic-pulse trains
around 1,550 nm, and the demonstration of their potential for low-
noise multiwavelength source development53. This research has
since opened the door to applying parabolic-pulse technology for
the ultrafast signal processing applications that are essential for an
all-optical network.

For example, the invariance of the output profile to input
pulse fluctuations is of great interest for pulse-shaping and pulse-
synthesis applications, enabling highly stable output that can be
applied to spectral slicing81,82, for example. Applications in the
domain of regeneration and retiming are also promising and can
benefit from the perfectly linear chirp induced through self-phase
or cross-phase modulation83–85. A further important development
has been the demonstration of passive parabolic-pulse generation
in undoped dispersion-decreasing fibre86,87, although the effect of
third-order dispersion in this case has been shown to have a more
limiting effect than in an amplifying fibre88. In addition, the wider
study of self-similar dynamics in fibres with longitudinally varying
parameters is becoming an active field of research relevant to pulse
shaping and pulse compression89–93, linked to previous studies of
certain classes of soliton propagation94,95.

OUTLOOK

It is clear that nonlinear optical fibre amplifiers that exploit
self-similar evolution dynamics have developed into a mature
alternative to other ultrafast pulse generation and shaping
techniques. In parallel, the success of self-similarity analysis in
nonlinear fibre optics is motivating more general studies into
the dynamics of guided wave propagation96–98 as well as related
self-similar evolution in physical systems such as Bose–Einstein
condensates99,100.

From a more general perspective, it is also interesting to
note that current research in many areas of nonlinear photonics
increasingly relies on sophisticated simulation and modelling
and, although such numerical treatments are indispensable, the
underlying physics is sometimes difficult to readily interpret. In
our opinion, one of the most attractive features of the extensive
recent interest in self-similarity is that it has reminded the

nonlinear-optics community of an extensive array of mathematical
tools that can be used to find analytic solutions to complex
dynamical problems. As mode-locked lasers generate ever-
shorter and more intense pulses, such nonlinear propagation
problems will become of increasing importance, and a complete
understanding of the propagation dynamics will be required both
for source optimization and the many potential multidisciplinary
applications. To this end, we believe that the search for universal
patterns in these phenomena, as pioneered centuries ago by Galileo,
will remain a very profitable direction of research.

doi:10.1038/nphys705
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