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The dipole vortex
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Abstract

We show that the field lines of the Poynting vector of the radiation field of an electric dipole are vortices if the

radiation carries angular momentum. When such a dipole is located near the surface of a perfect conductor, it induces a

current density on the surface, and it is shown that the field line pattern of this current density consists of infinite spirals.

We have identified a Master Spiral to which all field line spirals converge asymptotically. It is also shown that the field

lines of the Poynting vector of the radiation field near the surface contain a vortex.
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1. Introduction

A singular point in an optical radiation field is a

point where the amplitude of the field vanishes, and

hence the phase in that point is undefined. For a
long time, such phase singularities were considered

more of a curiosity, until Nye and Berry [1] showed

that singular points appear in a radiation field quite

naturally, as phase dislocations in traveling waves.

A particularly interesting phenomenon is the op-

tical vortex, the center of which is a singular point.

Such vortices appear, for instance, in interference

patterns between incident waves and diffracted or
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reflected waves. The earliest example is the dif-

fraction of a plane wave by a half-infinite screen,

where vortices appear at the illuminated side of the

screen [2]. More recently, it was found that vortices

occur in the diffracted field of a plane wave by a slit
in a screen [3,4], and in interference between three

plane waves [5]. Another example is the field

structure in the focal plane of a focusing lens,

where the energy flow exhibits vortex lines [6,7]. It

seems that optical vortices which appear in the field

of a Laguerre–Gaussian (laser) beam are the most

widely studied [8–11].

In an optical vortex, the field lines of the Po-
ynting vector, representing the energy flow, circu-

late around the singular point (two dimensions) or

around a vortex axis (three dimensions). There

seems to be an intimate relation between the

angular momentum of the light [12–15], and the
ed.
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existence of vortices in the radiation field. Al-

though this relation is not clear in general, it is well

established that for the Laguerre–Gaussian beam

vortices are only observed for modes that carry

angular momentum [16,17]. Conversely, if a radi-

ation field carries angular momentum, one would
expect that there is a possibility that vortices are

present. In this paper we shall show that for the

field of the simplest and most important radiating

system, the electric dipole, the appearance of a

vortex and the presence of angular momentum in

the field go hand-in-hand.
2. Dipole radiation

We consider an electric dipole moment dðtÞ,
with complex amplitude d and oscillating har-

monically with angular frequency x:

dðtÞ ¼ Re½de�ixt�: ð1Þ
The electric field, emitted by the dipole, is written

as

Eðr; tÞ ¼ Re½EðrÞe�ixt�; ð2Þ
and when the dipole is located at the origin of

coordinates, the complex amplitude EðrÞ is given

by [18]

EðrÞ ¼ k3

4pe0q
d

�
�ðd � r̂Þr̂þ 1

q
1

q

�
� i

�
½3ðd � r̂Þr̂� d�

�
eiq;

ð3Þ
with k ¼ x=c. The dimensionless radial distance
between the dipole and the field point r is q ¼ kr,
and r̂ is the radial unit vector. The corresponding

magnetic field is

Bðr; tÞ ¼ Re½BðrÞe�ixt�; ð4Þ

with complex amplitude

BðrÞ ¼ 1

c
k3

4pe0q
1

�
þ i

q

�
ðr̂� dÞeiq: ð5Þ

3. Poynting vector and emitted power

The Poynting vector is defined as Sðr; tÞ ¼
Eðr; tÞ � Bðr; tÞ=l0 in terms of the time dependent

fields. With Eqs. (2) and (4) we can express this in
terms of the complex amplitudes of the electric and

magnetic fields as

SðrÞ ¼ 1

2l0

Re½EðrÞ � BðrÞ��; ð6Þ

where we have dropped terms that oscillate at
twice the optical frequency. For time harmonic

fields, the Poynting vector is time independent, so

we write SðrÞ instead of Sðr; tÞ. We then substitute

the right-hand sides of Eqs. (3) and (5), and work

out the cross product. This yields

SðrÞ ¼ ck6

32p2e0q2
½d � d�

�
� ðd � r̂Þðd� � r̂Þ�̂r

� 2

q
1

�
þ 1

q2

�
Im½ðd � r̂Þd��

�
: ð7Þ

The significance of the Poynting vector is that
n̂ � SðrÞdA, with n̂ a unit vector perpendicular to

the surface element dA represents the energy per

unit of time flowing through dA into the direction

of n̂. We now consider a sphere with radius R, and
centered at the origin. We then have n̂ ¼ r̂, which

gives Im½ðd � r̂Þd�� � r̂ ¼ 0, showing that the second

term in braces in Eq. (7) does not contribute to the

radial power flow. Since q ¼ kR on the sphere and
dA ¼ R2 sin hdhd/ in spherical coordinates, we see

that r̂ � SðrÞdA is independent of R. We then obtain

for the emitted power by the dipole

dUem

dt
¼ r̂ � SðrÞdA ¼ x

k3

12pe0
d� � d; ð8Þ

a well-known result [19], which is usually derived

by only considering the fields for R large (far field).
4. Spherical unit vectors

The Poynting vector SðrÞ, Eq. (7), has a radial

part, proportional to r̂, and a part that depends on

the orientation of the complex amplitude d of the

dipole. We shall now assume that d is proportional
to a spherical unit vector

d ¼ d0eiwes; s ¼ �1; 0; 1; ð9Þ
with d0 > 0 and w an overall phase. When the di-

pole is an atom, the emitted radiation is fluores-

cence and the dipole moment has the form as in

Eq. (9). For s ¼ 0 we have a Dm ¼ 0 transition and

s ¼ �1 corresponds to a Dm ¼ 1 transition. The
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helicity s refers to a preferred direction, taken to

be the z-axis, and for a quantum field this is the

quantization axis. For s ¼ 0 we have e0 ¼ ez, and

with Eq. (1) this gives for the dipole moment

dðtÞ ¼ d0ez cosðxt � wÞ, representing a linear di-
pole directed along the z-axis.

For s ¼ �1 the unit vectors are defined as

e�1 ¼
1ffiffiffi
2

p ð�ex � ieyÞ; ð10Þ

and the corresponding dipole moment is

dðtÞ ¼ d0ffiffiffi
2

p ½�ex cosðxt � wÞ � ey sinðxt � wÞ�:

ð11Þ
For s ¼ 1 the dipole moment rotates counter-
clockwise (from þx to þy) in the xy-plane, and for

s ¼ �1 the rotation is clockwise.

The spherical unit vectors are normalized as

e�s � es ¼ 1, and therefore we have d� � d ¼ d2
0. For

the emitted power, Eq. (8), we shall write P0, which is

P0 ¼ x
k3d2

0

12pe0
: ð12Þ

Furthermore, it follows by inspection that

�2Im½ðes � r̂Þe�s � ¼ se/ sin h ð13Þ
in spherical coordinates, and therefore the Poyn-

ting vector becomes

SðrÞ ¼ 3k2P0
8pq2

½1
�

� ðes � r̂Þðe�s � r̂Þ�̂r

þ s
q

1

�
þ 1

q2

�
sin he/

�
: ð14Þ

The radial part can be simplified as

1� ðes � r̂Þðe�s � r̂Þ ¼
sin2 h; s ¼ 0;
1� 1

2
sin2 h; s ¼ �1:

�
ð15Þ

5. Field lines of the Poynting vector

For a dipole with a dipole moment along the z-
axis, the Poynting vector is given by Eq. (14) with

s ¼ 0

SðrÞ ¼ 3k2P0
8pq2

sin2 hr̂: ð16Þ
At any field point, SðrÞ is proportional to r̂, with

the constant of proportionality positive. There-

fore, the field lines are straight lines, starting at the

origin and radially outward.

More interesting is the case of a rotating dipole

moment in the xy-plane. The field lines of the

vector field SðrÞ are curves rðuÞ, with u a dummy
parameter, for which at each point of the curve,

SðrÞis the tangent vector of the curve. Therefore,

the field lines are the solutions of

dr

du
¼ SðrÞ: ð17Þ

In spherical coordinates this is equivalent to the

following set of three coupled differential equations

for the coordinates r, h and / as a function of u:

dr
du

¼ SðrÞ � r̂; ð18Þ

r
dh
du

¼ SðrÞ � eh; ð19Þ

r sin h
d/
du

¼ SðrÞ � e/: ð20Þ

A great simplification in the computation of field

lines arises if one realizes that the vector fields SðrÞ
and f ðrÞSðrÞ, with f ðrÞ an arbitrary positive

function of r, have the same field lines. For in-
stance, if one would take f ðrÞ ¼ 1=jSðrÞj, then the

parameter u equals the arc length of the field line.

For the problem at hand, we take f ðrÞ as

f ðrÞ ¼ 3k3P0
8pq2

1

��
� 1

2
sin2 h

���1

: ð21Þ

The set of Eqs. (18)–(20) for the field lines then

becomes

dq
du

¼ 1; ð22Þ

dh
du

¼ 0; ð23Þ

d/
du

¼ s

1� 1
2
sin2 h

1

q2
1

�
þ 1

q2

�
: ð24Þ



Fig. 1. Field line of the Poynting vector for a dipole with he-

licity s ¼ 1, and for h0 ¼ p=4 and /0 ¼ p=2. The field line is

projected onto the yz-plane, and we use the dimensionless co-

ordinates �x ¼ kx, etc. The field line spirals around the z-axis an

infinite number of times and lies on the cone h ¼ p=4, which is

indicated by the dashed line. The arrows indicate the direction

of the field line. The arrow pointing to the left is behind the z-

axis, since the orientation of the field line is counterclockwise

with respect to the xy-plane.
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From Eq. (22) we see that we can take u ¼ q as the

free parameter. The second equation gives h ¼ h0,
e.g., h is constant on a field line. Since q > 0 is the

free parameter, we find that a field line starts at the

origin and lies on the cone h ¼ h0. The solution of

Eq. (24) is

/ðqÞ ¼ /0 �
s

1� 1
2
sin2 h0

1

q
1

�
þ 1

3q2

�
; ð25Þ

with /0 a constant. We then see that /0 ¼ /ð1Þ,
and therefore the two integration constants h0 and
/0 are the coordinates h and / of a point on the

field line far from the origin. For s ¼ 1 the angle
/ðqÞ increases with q, so that the field line winds

around the z-axis in a counterclockwise direction,

both for z > 0 and for z < 0, and stays on the cone

h ¼ h0. The orientation of the field line is the same

as the rotation direction of the dipole moment.

For s ¼ �1 the orientation reverses. Fig. 1 illus-

trates the resulting vortex.
6. Relation to angular momentum

The angular momentum density of an electro-

magnetic field is given by Iðr; tÞ ¼ e0r� ½Eðr; tÞ
�Bðr; tÞ� in terms of the time dependent fields. This

density is related in a simple way to the Poynting

vector according to

IðrÞ ¼ e0l0r� SðrÞ; ð26Þ
which is also independent of time, after dropping

the terms that oscillate with twice the optical fre-

quency. With Eq. (7) we then immediately obtain

IðrÞ ¼ 1

c
k5

16p2e0q2
1

�
þ 1

q2

�
Im½ðd � r̂Þðd� � r̂Þ�:

ð27Þ
Angular momentum is emitted by the dipole, and

it is shown in Appendix A that the angular mo-

mentum per unit of time passing through a sphere

of radius R, centered around the origin, is given by

dJem

dt
¼ r̂ �MðrÞdA ¼ k3

12pe0
Imðd� � dÞ; ð28Þ

which is independent of the radius of the sphere.

Here, MðrÞ is the angular momentum flux tensor.

This result has a striking resemblance with Eq. (8)

for the emitted power. The contribution to the

density Iðr; tÞ came from the term containing

Im½ðd � r̂Þd�� in Eq. (7), and this term gave the
tangential ðe/Þ component of the Poynting vector,

which leads to the vortex. We therefore conclude

that the field of a dipole contains a vortex if and

only if the angular momentum density of the field

is non-zero. Furthermore, Im½ðd � r̂Þd�� can only be

non-zero if the dipole moment d has an imaginary

part, which is also a necessary condition for a non-

zero emission rate, since Imðd� � dÞ is zero for d
real.

For a dipole moment of the form (9) we have

Imðd� � dÞ ¼ sd2
0ez; ð29Þ

which gives for the emission rate

dJem

dt
¼ s

P0
x
ez: ð30Þ

This shows that for a linear dipole the emission

rate is zero, and for a circular dipole the emission
rate is P0=x, in either the positive or negative z-

direction. For the angular momentum density we

have

Im½ðd � r̂Þðd� � r̂Þ� ¼ � 1

2
sd2

0 sin heh; ð31Þ



Fig. 2. Illustration of the angular momentum density field lines

for a rotating dipole moment in the xy-plane with positive he-

licity. The lines are semi-circles, starting on the negative z-axis

and ending on the positive z-axis. Therefore, the z-axis is a

singular line. The total emitted angular momentum is in the

positive z-direction.

Fig. 3. Schematic setup of the dipole near a perfect conductor.

The vectors r1 and r2 represent the field point r in the xy-plane,

with respect to the dipole and the image dipole, respectively.
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so that

IðrÞ ¼ � s
c

k5d2
0

32p2e0q2
1

�
þ 1

q2

�
sin heh: ð32Þ

This density is in the eh direction for all r, and

therefore the field lines are the meridians on a

sphere. For h ¼ 0 and h ¼ p, the overall factor

sin h on the right-hand side of Eq. (32) makes the

density vanish on the z-axis. Consequently, the

field lines run from pole to pole on a sphere, which

makes the z-axis a singular line. Fig. 2 shows the

field lines of the angular momentum density for
s ¼ 1. It is interesting to notice that angular mo-

mentum is emitted, with the vector sum being in

the z-direction, even though the field lines of the

density have no component in the radially outward

direction.
7. Dipole near a perfect conductor

When the dipole is located in the vicinity of a

perfect conductor, it will induce a surface charge

density and a surface current density. We consider
the situation shown in Fig. 3. The metal occupies

the half-space z < 0, and the dipole is located

on the z-axis, a distance H above the surface.

The field in z > 0 is then the sum of the field of

the dipole and its mirror image. When we write the

dipole moment as d ¼ d? þ dk, where the sub-

scripts indicate the perpendicular and parallel
parts of d with respect to the surface, then the

image dipole has dipole moment

d0 ¼ d? � dk ð33Þ
and is located a distance H under the surface.

Since there is no field in the half-space z < 0, it

follows from the boundary conditions at z ¼ 0 that

the complex amplitude of the induced current

density is given by [20]

iðrÞ ¼ 1

l0

ez � BðrÞ; ð34Þ

with BðrÞ the field just above the xy-plane, and the

time dependent current density is

iðr; tÞ ¼ Re½iðrÞe�ixt�: ð35Þ
The current density does not have fast oscillating

terms that would have to be dropped.

The magnetic field for a dipole at the origin of

coordinates is given by Eq. (5). We replace r by r1
for the field of the dipole and by r2 for the field of

the image dipole. For a point in the xy-plane we

have r1 ¼ r2, and we shall use the dimensionless
variable

q1 ¼ kr1 ð36Þ
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for the distance between the dipole and the field

point in the xy-plane. The magnetic field near the

xy-plane then becomes

BðrÞ ¼ k4

4pe0cq21
1

�
þ i

q1

�
ðr1 � dþ r2 � d0Þeiq1 :

ð37Þ
With the definition (33) of the mirror dipole and

the relations between the various vectors in Fig. 3

(r1 ¼ r� Hez, etc.) this can be written as

BðrÞ ¼ �k4

2pe0cq21
1

�
þ i

q1

�
eiq1ez � ðdzrþ HdkÞ:

ð38Þ
For the current density we then obtain

iðr; tÞ ¼ ck3

2pq21
Re 1

��
þ i

q1

�
eiðq1�xtÞðdzqr̂þ hdkÞ

�
;

ð39Þ
where q ¼ kr as before, and we have also set

h ¼ kH for the dimensionless distance between the

dipole and the surface.
Fig. 4. Field line pattern of the current density in the xy-plane

for the case of a dipole oriented perpendicular to the surface,

and for a fixed time. The circles are singular circles on which the

current density is zero, and they expand with a speed given by

Eq. (45) when time progresses. The origin of coordinates is a

singular point.
8. Linear dipole moment

Let us first consider a linear dipole oriented

along the z-axis, for which the dipole moment is

given by Eq. (9) with s ¼ 0. Then the current

density (39) simplifies to

iðr; tÞ ¼ i0
q21

q cosðq1
�

� aÞ � 1

q1
sinðq1 � aÞ

�
r̂; ð40Þ

with

i0 ¼
ck3d0
2p

; ð41Þ

and for the time parameter we introduce the di-

mensionless abbreviation

a ¼ xt � w: ð42Þ
The field lines of the current density are in the radial

direction, and they can be inward or outward, de-

pending on the sign of the factor in square brackets.
This also implies that the current density is zero if

the term in square brackets vanishes, e.g., if

tanðq1 � aÞ ¼ q1; ð43Þ
with

q1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ h2

p
: ð44Þ

For a given a (or time), Eq. (43) has an infinite

number of solutions q. Each q corresponds to a

circle in the xy-plane on which the current density

is zero, and hence these are singular circles. When
going across a singular circle in the radial direc-

tion, the term in square brackets in Eq. (40)

changes sign, and therefore the current density

changes direction. This leads to the field line pic-

ture shown in Fig. 4 for a fixed value of a. For
q � 1; h, the term in square brackets reduces to

approximately cosðq� aÞ, and this term vanishes

in intervals of p, given a. Therefore, for q large, the
separation between the circles in Fig. 4 becomes

approximately half a wavelength. Furthermore, we

notice that iðr; tÞ has an overall factor of q, which
makes the origin of coordinates a singular point.

We now consider the change in the field line

picture when time progresses. First of all, when we

consider a fixed point r, the current density oscil-

lates harmonically in the radial direction. On the
other hand, when we replace a by aþ 2p in Eq.

(40), the current density remains unchanged.



Fig. 5. Field lines of the current density in the surface of the

conductor for a dipole in the x-direction.
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Therefore, the picture repeats itself every Dt ¼
2p=x. Let us now consider the time evolution of

the singular circles. For a given a, Eq. (43) deter-
mines a series of values of q, each representing a

singular circle. For varying a, we can see this as a

set of functions qða). The rate of change with a of
the solutions qða) is dq=da, which can be found by

differentiating Eq. (43) with respect to a. With

q ¼ kr and a ¼ xt � w we have dr=dt ¼ ðx=kÞdq=
da, and x=k ¼ c, the speed of light. We then find

for the rate of change of the radii of the circles

v ¼ dr
dt

¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðh=qÞ2

q
þ c

q2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðh=qÞ2

q : ð45Þ

In other words, a singular circle with radius r ex-

pands in time with this radial velocity v. It is in-

teresting to see that this velocity depends on q, and
that v is larger than the speed of light. For q ¼ 0
we have v ¼ 1 and for q ! 1, we have v ! c.
The reason why different circles expand at a dif-

ferent speed is the following. Every Dt ¼ 2p=x the

field line picture reproduces itself. Say we start at

t ¼ 0. Then, in a time Dt a circle must expand at

such a rate that it ends up exactly at the location

where the second next singular circle was at t ¼ 0.

But since the circles are not evenly spaced, the
distance traveled in time Dt differs from circle to

circle.

Next we consider a dipole oriented parallel to

the surface of the perfect conductor, say in the

x-direction. The current density then becomes

iðr; tÞ ¼ i0
q21

h cosðq1
�

� aÞ � 1

q1
sinðq1 � aÞ

�
ex:

ð46Þ

The current density is now in the x-direction for all

field points. The term in square brackets is the

same as in Eq. (40), so this current distribution has
the same singular circles as for the perpendicular

dipole. As compared to Eq. (40), here we have an

overall factor h, rather than q, and therefore the

origin of coordinates is not a singular point for this

case. Fig. 5 shows the field line pattern for the

parallel dipole.

Finally, let us consider the case of a linear di-

pole moment with arbitrary orientation. We then
have d ¼ d0 expðiwÞu, with u real, and the time
dependent dipole moment is dðtÞ ¼ d0 cosðxt� wÞu.
The current density becomes

iðr; tÞ ¼ i0
q21

q cosðq1
�

� aÞ � 1

q1
sinðq1 � aÞ

�

� uzr̂
�

þ h
q
uk

�
: ð47Þ

As compared to Eq. (40) we see that the r̂ compo-

nent is multiplied by uz, and that a term ðh=qÞuk
adds to the radial part. For q � h this second term

is negligible, and the field lines are the same as in

Fig. 4. Only near the origin will there be a contri-

bution from the parallel component of the dipole
moment. Therefore, the general field line picture of

the current density is as in Fig. 4, except that near

the origin the field lines acquire a component pro-

portional to uk. As a consequence, the origin is not

a singular point anymore. This also means that a

field line pattern as in Fig. 5 can only occur if the

dipole moment is exactly parallel to the xy-plane.

The slightest contribution from a z-component will
dominate the field pattern for q large.
9. Rotating dipole moment

We now consider a rotating dipole moment,

parallel to the xy-plane, and we shall take d as

in Eq. (9) with s ¼ 1. When we substitute this



Fig. 6. Typical field line for the current density in the xy-plane,

induced by a counterclockwise rotating dipole moment for

a ¼ 0 and h ¼ 1. The given point on the field line is

ð�x0; �y0Þ ¼ ð8;�5Þ, and this point is indicated by +.
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expression for d into Eq. (39), we find for the

current density an expression similar to Eq. (47)

for the linear dipole moment. For the discussion in

this and the following sections it is advantageous

to combine the sin and cos terms in the square

brackets, which yields

iðr; tÞ ¼ ioh

q21
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

q21

s
½sinðq1 � d� aÞex

þ cosðq1 � d� aÞey �; ð48Þ
with

d ¼ arctanðq1Þ: ð49Þ
For a fixed point in the xy-plane, the magnitude of

the current density is the same for all time t (all a),
since the vector in square brackets in Eq. (48) is a
unit vector. When time progresses, this vector ro-

tates with angular frequency x in the counter-

clockwise direction. Therefore, at each point in the

xy-plane, iðr; tÞ is a rotating vector of constant

magnitude. Furthermore, for a given value of q,
e.g., on a circle around the origin, the current

density is the same in magnitude and direction at

any point on this circle. Therefore, vectors iðr; tÞ
on a circle all point in the same direction and they

each rotate counterclockwise with angular fre-

quency x. This gives rise to a very peculiar field

line pattern, as we shall show below.

For the field lines we shall use the dimensionless

Cartesian coordinates �x ¼ kx and �y ¼ ky. Points on
a field line have coordinates (�x,�y), which are pa-

rameterized with the dummy variable u, and these
functions �xðuÞ and �yðuÞ are the solutions of
d�x
du

¼ sinðq1 � d� aÞ; ð50Þ

d�y
du

¼ cosðq1 � d� aÞ; ð51Þ

with

q1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2 þ �y2 þ h2

p
; ð52Þ

and d given by Eq. (49). A field line goes through

each point in the xy-plane, and the choice of any

such point, say ð�x0; �y0Þ, determines the solution of

this set of equations. It does not appear possible to

solve this set analytically, so we shall resort to nu-
merical integration. We use fourth-order Runge–

Kutta integration [21].

Fig. 6 shows a typical field line through a given

point ð�x0; �y0Þ. Near this given point, the field line

turns rapidly, and then it spirals out in the clock-

wise direction when integrated forward (du positive

in Eqs. (50) and (51)). If we integrate backwards, it
also spirals out. Since this is integrated against the

field line, this is a field line that spirals inwards and

ends up exactly at the given point ð�x0; �y0Þ. These
spirals continue indefinitely, and fill up the entire

xy-plane. It is interesting to see that the incoming

spiral lies in between the outgoing spiral and runs

in the opposite direction. Exactly at the given point

ð�x0; �y0Þ the incoming counterclockwise spiral re-
verses direction and continues as the outgoing

clockwise spiral. There is nothing special about the

point ð�x0; �y0Þ for Fig. 6; field lines through any

point show similar behavior. Since we know that

field lines of any vector field cannot cross, and since

we already fill up the entire xy-plane with the field

line through a single given point, it is not obvious

what the general field line picture looks like.
10. The Master Spiral

We now introduce a set of two curves, defined

in polar coordinates (q;/) by



Fig. 7. Graph of the Master Spiral for a ¼ 0 and h ¼ 1. When

we start at point P, which is on the n ¼ 0 curve, the curve

spirals inward in the counterclockwise direction, until it reaches

the origin of coordinates. It then continuous to spiral outward

as the n ¼ 1 curve in the clockwise direction. Also shown is the

field line from Fig. 6.
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/ðqÞ ¼ d� q1 þ aþ np; n ¼ 0; 1; ð53Þ
where d and q1 are functions of q, and h and a are

constants. For each value of q, with 06 q < 1, the

dimensionless Cartesian coordinates of the corre-

sponding point in the xy-plane then follow from

�x ¼ q cos/; �y ¼ q sin/: ð54Þ
If ð�x; �yÞ is a point on the curve with n ¼ 0 for a

given q, then it follows immediately that for the

same q the point on the curve with n ¼ 1 is

ð��x;��yÞ. Since both curves are defined for q ¼ 0,
they connect at the origin.

On a curve, aþ np is constant. If we follow

the n ¼ 0 curve, and q increases by an amount

such that d� q1 decreases by exactly 2p, then the

curve makes a full rotation around the origin in

the clockwise direction because / decreases by

2p. Since over this full rotation q increases, the

curve does not close on itself. If we keep on
increasing q, the curve keeps on spiraling around

the origin, up to infinity. The curve with n ¼ 1

has the same appearance, and a moment of

thought shows that this spiral runs in between

the n ¼ 0 spiral (consider a point ð�x; �yÞ on the

n ¼ 0 spiral and the corresponding point

ð��x;��yÞ on the n ¼ 1 spiral; then decrease / for

both simultaneously). We now assign an orien-
tation to these curves. The n ¼ 0 curve is defined

to run into the direction of increasing /, so that

it spirals inward from infinity in the counter-

clockwise direction. The n ¼ 1 spiral is given an

orientation such that it runs into the direction of

decreasing /, and therefore it spirals outward

from the origin, in between the first spiral, and

in the clockwise direction. Since the curves
connect at the origin, we effectively have one

curve, which is shown in Fig. 7. We call this the

Master Spiral, for reasons explained below.

From Eq. (53) we obtain

d/
dq

¼ � qq1
1þ q21

; ð55Þ

and with Eq. (54) we then derive

d�y
d�x

¼ ð1þ q21Þ sin/� q2q1 cos/
ð1þ q21Þ cos/þ q2q1 sin/

ð56Þ

for the slope of the curve in any given point. In

particular, at the origin of coordinates this be-
comes tan/, and with q1 ¼ h and Eq. (53) this

gives

d�y
d�x

¼ � tanðh� d� aÞ; ð57Þ

both for the n ¼ 0 and the n ¼ 1 curve. Therefore,

they connect smoothly. Furthermore, we see from

Eq. (55) that dq=d/ ! �1 for q large, so that

q 	 �/þ constant, and therefore the radius of a

loop of the spiral increases by 2p in dimensionless

units in each rotation, which corresponds to one

wavelength.
11. The field line pattern

We now return to the problem of the field lines

of the current density for the case of the rotating

dipole moment. We change Eq. (48) to polar co-

ordinates, which gives

iðr; tÞ ¼ i0h

q21
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

q21

s
½sinðq1 � dþ /� aÞr̂

þ cosðq1 � dþ /� aÞe/�; ð58Þ
and the equations for the field lines, Eqs. (50) and

(51), transform into

dq
du

¼ sinðq1 � dþ /� aÞ; ð59Þ



Fig. 8. Illustration of the field line pattern of the current den-

sity induced by a rotating dipole moment parallel to the xy-

plane, for a ¼ 0 and h ¼ 1.
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q
d/
du

¼ cosðq1 � dþ /� aÞ: ð60Þ

Let us consider a point ðq;/Þ on the Master Spiral,

and the field line that goes through this point.

From Eq. (53) we see that for every point on the
Master Spiral we have

sinðq1 � dþ /� aÞ ¼ 0; ð61Þ

cosðq1 � dþ /� aÞ ¼ ð�1Þn: ð62Þ

Therefore, the current density simplifies to

iðr; tÞ ¼ i0h

q21
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

q21

s
ð�1Þne/: ð63Þ

We notice that i at this point is exactly in the
positive ðn ¼ 0Þ or negative ðn ¼ 1Þ tangential di-

rection, which is the same orientation as the

Master Spiral. Furthermore, from Eq. (59) we see

that dq=du 	 0 near the Master Spiral, so that

when a field line is into the direction of the spiral,

it will approximately remain in that direction.

Therefore, on or near the Master Spiral, the cur-

rent density follows the spiral. On the other hand,
if we consider a field point in between two loops of

the spiral, then we have cosðq1 � dþ /� aÞ 	 0

and sinðq1 � dþ /� aÞ 	 �1. From Eq. (58) we

then see that i is approximately in the r̂ direction,

either inward or outward. From Eqs. (59) and (60)

we furthermore observe that in this area in be-

tween the loops of the Master Spiral, q varies

rapidly and / is approximately constant. But then,
when we follow a field line through a point in

between two loops, and q varies significantly, we

will approach one of the loops of the spiral. But

there i should be again tangential, and into the

direction of the orientation of the spiral. This

leads to the conclusion that a field line through a

point in between the loops of the spiral rotates

quickly, and adjusts itself so as to follow the
spiral. This leads to the situation shown in Fig. 6.

We have copied that figure into the spiral of

Fig. 7, and we see indeed that the field line makes

a turn of p, and runs from one loop of the spiral to

the adjacent loop, after which it keeps on follow-

ing the Master Spiral forever. Hence the name

Master Spiral.
The reasoning above holds for any point in

between the loops of the spiral. The field line pic-

ture that emerges is then that there are little lobes

everywhere in between the loops of the Master

spiral, such as the one shown in Fig. 7. Fig. 8 il-

lustrates the resulting field line pattern. When time
progresses, the entire picture rotates with angular

velocity x.
Another way of looking at this is by considering

q as a function of / for a field line. From Eqs. (59)

and (60) we then have

dq
d/

¼ q tanðq1 � dþ /� aÞ: ð64Þ

Far away from the origin we have q large, and this
would make dq=d/ large on a field line, due to the

overall factor of q on the right-hand side of Eq.

(64). This would imply that q changes rapidly with

/, corresponding to a field line that more or less

goes out in the radial direction. But such a field

line would cross the Master Spiral, and we know

that there the field line is exactly in the tangential

direction, which is a contradiction. The only pos-
sibility is that

tanðq1 � dþ /� aÞ ! 0 ð65Þ
for q large, and with q tanðq1 � dþ /� aÞ re-
maining finite. From Eq. (65) we conclude that

q1 � dþ /� a ! 0 or p for a field line, and this

limit is just Eq. (53), defining the Master Spiral.



Fig. 9. Enlargement of Fig. 8 to show the field lines of the

current density near the origin. TheMaster Spiral is indicated by

the dashed line.We see that theMaster Spiral is perpendicular to

the field line that goes through the origin of coordinates.
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Therefore, any field line approaches the Master

Spiral asymptotically.
Near the origin of coordinates, the Master

Spiral reverses direction, and the conclusions

above might have to be adjusted somewhat. Fig. 9

shows various field lines near the origin, and also

shown is the Master Spiral. From the equations

for the field lines, Eqs. (50) and (51), we can find

the slope d�y=d�x of the field lines. At the origin this

becomes

d�y
d�x

¼ cotðh� d� aÞ: ð66Þ

Comparison with the slope of the Master Spiral

at the origin, Eq. (57), shows that the field line is

perpendicular to the spiral at the origin. This

also proves that the Master Spiral itself is not a

field line, since field lines do not cross. Another

interesting feature that can be seen in the graph
is that when a field line crosses the Master

Spiral, the direction of the field line is still pure

tangential, although near the origin that is not

the direction of the spiral.
12. Poynting vector in the xy-plane

The electric field at the surface of the perfect

conductor is the sum of the field of the dipole and

the field of its mirror image. We obtain
EðrÞ ¼ k3

2pe0q1

�
� 1

q1

1

q1

�
� i

�
3h
q1

ðd � r̂1Þ
�

þ dz

�

þ dz þ
h
q1

ðd � r̂1Þ
�
eiq1ez; ð67Þ

with r̂1 the unit vector in the r1 direction. The

magnetic field at the surface is given by Eq.

(38), and with Eq. (6) we find for the Poynting

vector

SðrÞ ¼ ck6

8p2e0q31
Re ðqd�

z r̂

�
þ hd�kÞ dz

�
þ h
q1

ðd � r̂1Þ

þ i

q21
2hðd � r̂1Þ

�
þ 1

q1

3h
q1

ðd � r̂1Þ
�

þ dz

����
:

ð68Þ

We shall now consider the same cases as for the

current density.
12.1. Real dipole moment

Let the complex amplitude of the dipole mo-

ment be given by d ¼ d0 expðiwÞu, with u real.

Then the expression for the Poynting vector sim-
plifies considerably

SðrÞ ¼ 3k2P0
2pq31

q uz

�
þ h
q1

ðu � r̂1Þ
�

uzr̂
�

þ h
q
uk

�
; ð69Þ

with P0 defined by Eq. (12). The corresponding

current density is given by Eq. (47), and we see

that the terms in round brackets are the same.

Since this factor determines the direction of the
vectors SðrÞ and iðr; tÞ, we find that the Poynting

vector and the current density have the same di-

rection, apart from a possible minus sign.

Let us look at u ¼ ez, for which the current

density is shown in Fig. 4, and given by Eq. (40).

With u � r̂1 ¼ �h=q1, the Poynting vector becomes

SðrÞ ¼ 3k2P0
2pq51

q3r̂: ð70Þ

The field lines are in the radial direction and run-

ning outward, with the origin as a singular point

(SðrÞ ¼ 0 at q ¼ 0). The current density, on the

other hand, is time dependent and oscillates along

the radial direction.
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Next we consider u ¼ ex, for which the current

density is given by Eq. (46) and illustrated in

Fig. 5. Now we have u � r̂1 ¼ ðq=q1Þ cos/, and we

find for the Poynting vector

SðrÞ ¼ 3k2P0
2pq51

h2q cos/ex: ð71Þ

Due to the factor cos/, the field lines are in the

positive x-direction for x > 0 and the negative x-

direction for x < 0. On the y-axis the Poynting

vector is zero, and therefore the y-axis is a singular

line. The field lines are shown in Fig. 10.

12.2. Rotating dipole moment

The field lines of the Poynting vector for a ro-

tating dipole moment in free space are vortices

with an orientation following the rotation of the

dipole moment, as shown in Fig. 1. We now con-

sider the field lines near the surface of the con-

ductor for a rotating dipole moment a distance H

above the surface. Vector d is given by Eq. (9) with
s ¼ 1. We then have e1 � r̂1 ¼ �ðq=q1Þ expði/Þ=

ffiffiffi
2

p

and, after some rearrangements, Eq. (68) becomes

SðrÞ ¼ 3k2P0
4pq51

h2q r̂

�
þ 1

q1
2

�
þ 3

q21

�
e/

�
: ð72Þ

The corresponding current density in polar coor-

dinates is given by Eq. (58), and we see that for the

case of the rotating dipole moment the current
density and the Poynting vector are not propor-
Fig. 10. Field lines of the Poynting vector in the xy-plane for a

dipole moment in the x-direction.
tional. Both have a radial and a tangential com-

ponent, indicating a spiraling structure. For the

Poynting vector we see that both the r̂ and the e/
component are positive, so the field lines are ra-

dially outward, and they spiral in the counter-
clockwise direction. At the origin of coordinates

we have SðrÞ ¼ 0, which makes the origin a sin-

gular point of the field lines, and far away from the

origin we have SðrÞ / r̂. Apparently, for the ro-

tating dipole moment the field lines of the Poyn-

ting vector are very different from the field lines of

the current density.

The field lines are determined by the direction
of SðrÞ, which is given by the term in square

brackets in Eq. (72). The equations for the field

lines in polar coordinates are therefore

dq
du

¼ 1; ð73Þ

q
d/
du

¼ 1

q1
2

�
þ 3

q21

�
: ð74Þ

Eq. (73) shows that we can take u ¼ q, so that q
becomes the independent variable. Then Eq. (74)

can be solved analytically, with result
/ðqÞ ¼ /0 þ
3

q1h2
þ 1

h
1

�
þ 3

2h2

�
ln

q1 � h
q1 þ h

� �
:

ð75Þ
Here /0 is a constant, which is equal to / for
q ! 1 (just as in Eq. (25) for the dipole vortex).

The dimensionless Cartesian coordinates ð�x; �yÞ for
points on a field line then follow from Eq. (54).

Fig. 11 shows the field line of SðrÞ for /0 ¼ 0 (and

h ¼ 1). It follows immediately from Eq. (73) that a

value of /0 different from zero, simply rotates the

picture over /0. Therefore, all field lines are the

same, apart from their angular position in the xy-
plane. This in contrast to the field lines for the

current density with its intricate structure shown in

Fig. 8.

Since /ð1Þ ¼ /0, one would expect that the

field line approaches the line / ¼ /0 for q large.

For the case of Fig. 11 with /0 ¼ 0, this would be

the x-axis. It follows from the figure, however, that

this is not the case. Consider q large in Eq. (75).
We then have



Fig. 11. A field line of the Poynting vector in the xy-plane for a

rotating dipole moment parallel to the xy-plane.
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q1 	 q 1

�
þ h2

2q2

�
; ð76Þ

which gives

ln
q1 � h
q1 þ h

� �
	 � 2h

q
ð77Þ

and when we then expand the right-hand side of

Eq. (75) to lowest order in 1/q we obtain

/ 	 /0 �
2

q
: ð78Þ

Remarkably, this is independent of h. Then with

Eq. (54) we find the Cartesian coordinates to be

�x 	 q cos/0 þ 2 sin/0; ð79Þ

�y 	 q sin/0 � 2 cos/0 ð80Þ
for q large. Eqs. (79) and (80) represent a straight

line with slope d�y=d�x ¼ tan/0, as expected, but the

line does not go through the origin of coordinates.

For instance, the �y intercept is �2= cos/0, which is

�2 for the case of Fig. 10. Alternatively, for

/0 ¼ 0, Eq. (80) gives �y 	 �2 for q large.
13. Conclusions

A harmonically oscillating dipole moment

emits radiation, and we have shown that the

field lines of the Poynting vector are vortices if

the radiation carries angular momentum. One of

the field lines is shown in Fig. 1 for a dipole
moment that rotates counterclockwise in the xy-

plane. When such a rotating dipole moment is

placed in the vicinity of a perfect conductor, a

current density is induced in the surface. We

have studied the field line pattern of this current

density, and it was found that each field line
consists of two infinite counterrotating spirals

that wind into each other, and connect near

some point in the xy-plane. We have identified a

Master Spiral, which is the asymptotic spiral for

all field lines. It was furthermore shown that the

field lines of the Poynting vector in the xy-plane

are also vortices for the case of a rotating dipole

moment in the neighborhood of the xy-plane.
Appendix A

The angular momentum per unit of time pass-

ing through a surface element dA into the direction

of the unit normal vector n̂ on dA is given by

n̂ �MðrÞdA, where the angular momentum flux
tensor MðrÞ is defined as [22]

Mij ¼
X
k‘

ek‘jTikr‘: ðA:1Þ

The subscripts refer to the Cartesian components

of the tensor, and e is the completely anti-sym-

metric L�evi–Civita tensor. Here, T is the Maxwell
stress tensor, defined as

Tik ¼ e0EiEk þ l�1
0 BiBk � dik

1

2
e0E2

�
þ 1

2l
�1
0 B2

�
ðA:2Þ

in terms of the time-varying fields. We have

E2 ¼ Eðr; tÞ � Eðr; tÞ. When expressed in terms of

the complex amplitude, this becomes E2 ¼
ð1=2ÞEðrÞ � EðrÞ�, with again the fast oscillating

terms dropped. With similar expressions for the

other terms in Eq. (A.2), the time independent

stress tensor becomes

Tik ¼
1

2
Reðe0EiE�

k þ l�1
0 BiB�

kÞ

� 1

4
dikðe0E � E� þ l�1

0 B � B�Þ ðA:3Þ

in terms of the complex amplitudes. When inserted

into Eq. (A.1) this yields the time independent
angular momentum flux tensor.
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For the radial angular momentum flow we have

n̂ ¼ r̂, so we need

r̂ �MðrÞ ¼
X
ij

r̂iMijej; ðA:4Þ

and with Eq. (A.1) this is

r̂ �MðrÞ ¼
X
ijk‘

r̂ir‘ejek‘jTik: ðA:5Þ

Then we insert the right-hand side of Eq. (A.3) and

perform the summations. The term with dik givesX
ijk‘

r̂ir‘ejek‘jdik ¼ r̂� r ¼ 0: ðA:6Þ

The term with EiE�
k givesX

ijk‘

r̂ir‘ejek‘jEiE�
k ¼ ðE � r̂ÞðE� � rÞ; ðA:7Þ

and similarly for the term with BiB�
k , but since

B � r̂ ¼ 0 this term does not contribute. Then we

substitute the right-hand side of Eq. (3) for EðrÞ
which yields

r̂ �MðrÞ ¼ � k3

16p2e0r2
Re i

��
þ 1

q3

�
ðd � r̂Þðd� � r̂Þ

�
:

ðA:8Þ
When multiplied by the surface element dA of the

sphere, the r-dependence cancels, and integration

over the 4p solid angle givesZ
dXðd � r̂Þðd� � r̂Þ ¼ 4p

3
d� � d: ðA:9Þ

Since d� � d is pure imaginary, we finally obtain

r̂ �MðrÞdA ¼ k3

12pe0
Imðd� � dÞ; ðA:10Þ

which is Eq. (28). It is interesting to notice that

there is no contribution from the magnetic field,

and that the contribution to the angular momen-
tum flux comes from combined terms of the far

(1=q) and middle (1=q2) field. This in contrast to

the emitted power, for which only far field terms
contribute, with the electric and magnetic fields

both contributing.
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