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We reveal experimentally waveguiding characteristics and group-velocity dispersion of line defects
in photonic crystal slabs as a function of defect widths. The defects have waveguiding modes with
two types of cutoff within the photonic band gap. Interference measurements show that they exhibit
extraordinarily large group dispersion, and we found waveguiding modes whose traveling speed is 2
orders of magnitude slower than that in air. These characteristics can be tuned by controlling the defect
width, and the results agree well with theoretical calculations, indicating that we can design light paths
with made-to-order dispersion.
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A periodically modulated refractive-index structure,
namely photonic crystal (PC), can possess a photonic
band gap (PBG) under certain conditions, thus enabling it
to function as a photonic insulator [1,2]. If we introduce
a line or point defect into such photonic insulators, we
can build wavelength (l) scale optical waveguides or
resonators, thus making PCs possible candidates for
the platforms of future photonic LSIs [3]. Line-defect
waveguides (LDWGs) in PCs are receiving considerable
attention because their waveguiding mechanism is fun-
damentally different from that of conventional dielectric
waveguides, such as optical fibers, which rely on total
internal reflection. This difference allows us theoretically
to expect various unique properties not provided by
conventional waveguides. For example, theory predicts
that it is possible to realize a l-scale sharp bend with
LDWGs [4]. Another notable feature of LDWGs is their
group-velocity dispersion characteristics that differ greatly
from those of conventional waveguides. The dispersion
of LDWGs is largely tunable by designing the line defect
structures as described later. The unusual dispersion
may lead to a variety of interesting optical nonlinearity
phenomena such as soliton propagation or wavelength
conversion, and may also be employed for dispersion
management devices demanded by photonic information
technology.

In this regard, a PC slab that is a l�2-thick high-
refractive-index dielectric slab (e.g., Si) having two-
dimensional (2D) periodic air holes sandwiched between
air claddings is one of the most promising PC structures.
It can serve as an ideal 2D photonic crystal because of the
strong vertical confinement within the 2D plane. Recently,
the formation of the 2D PBG in TE polarization (E k 2D
plane) for PC slabs has been confirmed by transmission
measurements [5,6]. Light transmission through line
defects in PC slabs have also been observed [7–9], but
detailed spectroscopic measurements have been very
limited and it has not been directly shown that LDWGs
have dramatically different characteristics from conven-
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tional waveguides, especially in terms of their dispersion.
Concerning the dispersion, PC fibers have received much
attention [10], but they are fundamentally different from
LDWGs in PC slabs since they do not have periodicity
in the propagation direction or real PBGs within the
2D plane.

In this Letter, we experimentally study the wavelength
dependence of guiding modes of a series of line defects of
Si photonic crystal slabs that are fabricated by semicon-
ductor nanofabrication technology and reveal that their
group-velocity dispersion characteristics are fundamen-
tally different from those of conventional waveguides by
spectroscopic measurements.

We fabricated 2D hexagonal air-hole Si PC slabs (lattice
constant a is 0.39 mm) with single-line defects by e-beam
lithography and electron-cyclotron-resonance ion-stream
plasma etching using silicon-on-insulator substrates [11].
The underlying SiO2 layer was removed by selective wet
etching using HF solution. This resulted in the air-clad
2D Si PC slabs shown in Fig. 1. Since our fabrication
technology guarantees the resolution of ,5% in diameter
and ,1% in distance between the holes, we could control
the important geometrical parameters very precisely. We
prepared a series of LDWG samples having various defect
widths wd and defect lengths ld . The hole diameter
is set to 0.55a, and each line defect is connected to
a 10-mm-wide Si ridge waveguide which is used as
an output port. We measured the transmission spectra
in the 1.2 1.7 mm range by using a set of wide-band
superluminescent diodes as a light source. We directly
coupled linearly polarized light to an LDWG from a
polarization-maintaining single-mode tapered fiber. All
the measurements were made with TE polarization.

To realize LDWGs, the PC slabs should have wide PBG
within the 2D plane. Figure 2(a) shows the transmission
spectrum of defect-free PC slabs in the G-K and G-M di-
rection, which clearly proves that our samples have 2D
PBG from 1.22 to 1.58 mm for TE polarization. Next,
we investigated LDWGs where a single air-hole line had
© 2001 The American Physical Society 253902-1
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FIG. 1. Single missing-hole line defects of Si hexagonal air-
hole PC slabs. The slab thickness is 0.2 mm. The defect width
wd is defined as the spacing between the center of air holes near-
est to defects. (a) Schematic of samples, (b) reciprocal-space
representation, (c) scanning electron micrographs of fabricated
samples (wd � 1.0 and 0.7 W).

been removed from the hexagonal PC. Figure 2(b) shows
the transmission spectrum of the LDWG with wd � 1.0 W
(W �

p
3 a) and ld � 172 mm (441a). The effect of in-

troducing defects is clearly visible in the spectrum. A
single waveguiding mode appears in the PBG, which has
two distinctive cutoffs. We next examined the wd depen-
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FIG. 2. Transmission spectra (TE polarization): (a) defect-free
PCs, (b)– (i) line defects of various widths, (j) the same as (b)
but with shorter length. Theoretically calculated transmission
windows are represented by horizontal bars (solid and open
circles are cutoff points due to the mode gap, and the light
line). The values are normalized by the transmission of ridge
waveguides with the same length.
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dence. The measured spectra for various wd are shown
in Figs. 2(c)–2(i). Each LDWG has a clear waveguid-
ing mode with cutoffs, and the width and position of the
waveguiding mode depends strongly on wd . The mode
shifts to higher frequency as wd decreases from 1.0 to
0.8 W. But a new mode appears at a lower frequency for
0.75 W, and this becomes a single waveguiding mode for
wd , 0.75 W.

To obtain a comprehensive understanding of the un-
derlying physics of what we observed, we calculated the
theoretical dispersion curves (shown in Fig. 3) of the
LDWGs by directly solving time-dependent Maxwell
equations with the 3D finite-difference time-domain
(FDTD) method. We hereafter use normalized frequency
(a�l) and wavevector (ka). The calculated curves are
fairly complicated, but they are basically composed from
two contributions that are shown by broken lines in the
figure: one originates from refractive-index guiding (IG)
modes (linear curves) and the other from PBG guiding
(GG) modes (S-shaped curves). IG modes are similar to
dielectric waveguide modes and GG modes resemble mi-
crowave metallic-wall waveguide modes. The calculated
curves can be understood as a mixture of these IG and GG
modes, and their folded modes. Anticrossing occurs at the
intersecting points, which produces mode gaps within the
PBG. The observed lower-frequency cutoff corresponds
to this mode gap. Furthermore, when the mode is located
inside the clad light line, it becomes leaky [12]. The esti-
mation we obtained by the FDTD method shows that the
propagation loss at a point inside the light line [shown as
1 in Fig. 3(a)] is 119.5 dB�mm. This finite propagation
distance is the origin of higher-frequency cutoffs.

To examine directly whether this interpretation can be
applied to our experiments, we plot theoretical transmis-
sion windows determined from the above interpretation in

even

light line

wd=0.65W

(b)

PBG

IG

IG

GG

0.22

0.24

0.26

0.28

0.3

0.32

0 0.1 0.2 0.3 0.4 0.5
Wave vector (ka)

exp.

0.22

0.24

0.26

0.28

0.3

0.32

0 0.1 0.2 0.3 0.4 0.5
Wave vector (ka)

odd

even

even

exp.

wd=1.0W

(a)

index
guided
(IG)

gap
guided
(GG)

PBG

light line
 of air

+

N
or

m
al

iz
ed

 fr
eq

ue
nc

y 
(a

/λ
)

N
or

m
al

iz
ed

 fr
eq

ue
nc

y 
(a

/λ
)

FIG. 3. Theoretical dispersion curves of line defects of PC
slabs: (a) wd � 1.0 W (b) wd � 0.65 W. Solid lines are 3D
FDTD calculations. Broken lines illustrate hypothetical IG and
GG modes. Solid dots are experimentally determined dispersion
from the result in Fig. 4.
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FIG. 4. (a) Transmission spectrum of a wd � 1.0 W sample
(ld � 88a), showing clear Fabry-Perot oscillation. The inset is
a magnified plot. Schematic of FP cavities with the length of ld
is also shown. (b) Deduced group index ng vs wavelength for
wd � 1.0 W and wd � 0.65 W.

Fig. 2. The solid and open circles are the cutoffs due to
the mode gap and the light line, respectively. The experi-
mentally observed transmission windows for different wd

are explained very well by theoretical calculation, which
directly proves that these theoretically predicted wave-
guiding modes are actually realized in our LDWGs. To
further examine the nature of the cutoffs, we measured a
shorter 1.0 W sample (ld � 88a). The measured transmis-
sion spectrum [Fig. 2(j)] shows that the higher-frequency
cutoff becomes less significant and almost invisible, al-
though the lower-frequency cutoff remains the same as
that for ld � 441a. Since quasiwaveguiding modes with
a propagation loss of the order of 100 dB�mm can trans-
mit through 34-mm-long LDWGs with only a few dB loss,
this result can be understood from the above interpreta-
tion. This implies that we have to take these quasiwave-
guiding modes into account if we wish to have a strictly
single-mode waveguide. Our calculation confirmed that
this condition is satisfied for wd , 0.80 W.

Our results make the LDWG waveguiding characteris-
tics fairly clear, but they do not tell about the dispersion
characteristics. In the theoretical curves (Fig. 3), we can
see that the dispersion is very unusual but such a prop-
erty has not been proven. This is because the transmission
window yields only information on the frequency regime,
whereas we have to obtain information on the wavevec-
tor regime to determine the dispersion. Since one of the
most distinctive features of LDWGs is their unique dis-
appearing characteristic, we next proceeded to examine
the dispersion.

It is possible to utilize interference phenomena to obtain
information on wavevector k. In our case, the easiest way
to do this was to detect Fabry-Perot (FP) interference in-
side the sample itself. Since our sample intrinsically has
two mirrors (a cleaved facet of the LDWG and the bound-
ary between the LDWG and ridge waveguide) which form
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a FP cavity, as shown in Fig. 4(a). FP resonance oscilla-
tion can be already seen in some of the spectra in Fig. 2.
Figure 4(a) is the spectrum of a 1.0 W sample obtained
with higher resolution, showing apparent FP-type oscilla-
tion with a 2–5 dB amplitude. Note that the oscillation
period is not constant and becomes smaller as l becomes
longer, suggesting a strongly dispersive character. Since
the k spacing of the FP oscillation should be Dk � a�2ld ,
which leads to a group velocity of yg � c�ng where ng

is the group index ng � l2��2lcDl�, the decrease in the
oscillation period implies a decrease (increase) in group
velocity (ng). The inset in the figure is a magnified spec-
trum showing that clear oscillating behavior remains even
when the period becomes very small. We deduced ng

from the measured oscillation using the above relation.
Figure 4(b) summarizes the deduced ng for two types of
samples as a function of l. We confirmed that samples
with the same wd but different ld (from 88a to 441a) pro-
duce the same ng. The dispersion of ng seen in Fig. 4(b)
is extremely large compared to that of conventional wave-
guides and photonic crystal fibers [10,13]. In the case for
wd � 1.0 W, the deduced ng varies approximately from 5
to 90. This means that the speed of light propagation along
the LDWG is 5 to 90 times slower than that in air. This re-
sult demonstrates that waveguiding modes with very large
group dispersion and extremely slow velocity are realized
in LDWGs.

The effect of optical processes induced by light-matter
interaction such as amplification or wavelength conversion
will be increased if the group velocity inside the media
becomes slow. In other words, effective light-matter inter-
action is enhanced as ng becomes large. For conventional
waveguides, ng is comparable to the refractive index of
the component materials. The observed large reduction
in group velocity with 2 order of magnitude indicates that
various kinds of optical processes will be enhanced for this
LDWG. A recent report on light-atom coupled systems has
shown that light velocity can be greatly reduced by using
laser cooling [14]. Although the basic physics is different,
our result demonstrates another way of controlled braking
light propagation.

Figure 4(b) shows that the enhancement of ng is largest
near the mode gap where the anticrossing effect is domi-
nant. However, ng is still larger than the material phase
index np (3.46 for Si) even when l is far from the
mode gap. This feature is more pronounced for narrower
LDWGs. The inset in Fig. 4(b) shows ng for a 0.65W
sample is around 7–8 in this region, which is more
than twice as large as the material index. Generally,
ng is expressed as ng � np 2 l�dnp�dl�, and there-
fore ng , np if the structure has anomalous dispersion
(dn�dl . 0) which is mostly the case for conventional
waveguides (here, we ignore the material dispersion). But
waveguides with large Dn can have normal dispersion
(dn�dl , 0) and thus ng . np . The increase of ng is
the result of the wave function being squeezed within the
253902-3
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waveguides, and thus it is more pronounced for larger Dn.
However, even for the Si-air stripe waveguides (nearly
the largest Dn), ng cannot be as large as 5. This is the
limitation of total-internal reflection confinement, which
does not apply for LDWGs because the confinement
mechanism is fundamentally different. These results
show that we can design various types and strengths of
dispersion in LDWGs that can be fabricated by the current
technology.

Finally, we use the experimentally determined ng value
to construct the full dispersion curve, which is possible by
integrating ng [15]. We plot the deduced dispersion for 1.0
and 0.65 W in Fig. 3. For both samples, the experimen-
tally determined dispersion curvature is fairly close to the
calculated one. Note that the agreement is achieved even
where the curve heavily deviates from linear. This agree-
ment demonstrates that theoretical designing of waveguid-
ing modes is realistically possible by using the current
nanofabrication technology.

We think that the slowest value of group velocity is still
limited by technological reasons (e.g., structural imperfec-
tion), but there is something still worthwhile to examine
further. In our case, the very large enhancement is real-
ized for wd , 1.0 W, and we did not observe the region of
ng . 20 for narrower LDWGs (wd , 0.80 W) although
the propagation loss is comparable. We regard the inclu-
sion of GG modes as effective to realize very small ve-
locity mode (note that LDWG modes for the wd � 1.0 W
mode are strongly mixed with GG modes near the cutoff,
but those for wd , 0.80 W are not).

The highly dispersive nature, which has been directly
demonstrated in this work, is one of the most distinctive
features for LDWGs, and this strong dispersion will open
up new possibilities for functional waveguides. Combina-
tions of the unusual dispersion with various optical nonlin-
earity phenomena are very interesting because high photon
density can be easily realized in these waveguides due to
the strong confinement within the nanoscale cross section.
The achieved agreement between experiment and theory
suggests that we can design various unique dispersions by
controlling the geometrical configuration of PCs. By us-
ing this technology, we can control the light transmission
253902-4
through a light path in a PC platform with a great degree
of freedom.
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