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Abstract Improvements, in terms of output power, spatial beam quality, bend insen-

sitivity : : : are still required in the field of single-mode fiber lasers. A major trend
is to increase the active core area to increase the thresholds of nonlinear effects

while ensuring a transverse single-mode behavior. Actually, increasing the active
ions’ concentration is also demanded since it allows a drastic reduction of the fiber

length, everything being equal. Two non-exclusive strategies are laid out to overcome
fiber laser limitations. On the one hand, a large mode area photonic bandgap fiber is

shown to lead to a transverse single-mode fiber laser with very good lasing efficiency.
On the other hand, it is demonstrated that surrounding a highly multimode active core

by a properly designed microstructured cladding allows the fiber laser to be operated
in the single-mode regime.
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1. Introduction

Nowadays, fiber lasers are entering the market of high-power lasers [1]. Nonlinear effects
(mainly stimulated scatterings), whose threshold is conversely proportional to effective
mode area (Aeff ) and proportional to fiber length, are main limiting factors leading to
significant disturbance of spectral and spatial properties of the output beam. High-power
generation requires large mode area (LMA) fibers to increase the threshold of optical
nonlinearities while preserving a single-mode emission. The LMA architecture is usually
obtained at the cost of a weakened guidance, leading to high bend-sensitivity. Hence,
the fiber must be straight to avoid any power leakage, forbidding the construction of
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compact fiber lasers. Moreover, bending-induced mode distortion seems a critical issue
to tackle [2].

Solutions based on effective single-mode fibers were recently proposed. Here, mul-
timode fibers are used and modal filtering is carried out. Filtering techniques imply a
spreading of the modal field from the active area, favoring emission of a single mode,
usually the fundamental mode. Together with the discrimination of high-order modes
by proper curvature of a highly-multimode fiber [3], the use of helical-core fiber [4],
spun-double-core fiber [5], or gain-guided, index-anti-guided fibers [6] are promising
techniques.

On the other hand, nonlinear thresholds may be increased by decreasing the fiber
length. Everything being equal, this could be done by increasing the active ion concentra-
tion. Despite the use of fluorine ion, rare-earth ion, and aluminium ion co-doping increases
the refractive index of the core material. Hence, the average rare-earth ion concentration
in the core must be kept low to ensure a low numerical aperture. Strategies must be
deployed to simultaneously obtain high active ion concentration and single-modedness.

In this communication, our endeavors toward high-power fiber laser construction
under the above mentioned constraints are reviewed. Attention was paid to appropriate
fiber designs. In section 2, all-solid photonic bandgap fiber is shown to be promising
for high-power fiber lasers. In section 3, strong interaction between a highly multimode
core and a properly tailored microstructured cladding is shown to lead to effectively
single-mode operation of a fiber laser.

2. Photonic Bandgap Fiber Laser

We have recently proposed to simultaneously address single-modedness and bend loss
issues by implementing a LMA photonic bandgap fiber (PBGF) [7].

A PBGF is basically composed of a low-index core surrounded by a periodic
cladding. In certain circumstances, light can be reflected off the cladding inclusions and
efficiently guided in the core even in absence of total-internal reflection. The photonic
crystal can be designed to efficiently guide one core mode, leading to single-mode
operation. Moreover, this mode can be tightly trapped to the core even if the fiber is
bent. Modal discrimination and resistance against curvature can then be obtained in
PBGF. Such a fiber then becomes a convenient platform for high-power delivery or
generation.

Design rules towards an Yb3C-doped LMA bend-resistant PBGF are examined.
Experimental results concerning the continuous wave (cw) and pulsed operation regimes
are given. Conclusions and prospects about the fiber design are drawn.

2.1. Design Rules

The canonical form of the refractive index profile of the PBGF studied is shown in
Figure 1a. The perfectly circular fiber consists in a low-n core surrounded by an al-
ternation of high- and low-n layers constituting a cylindrical Bragg mirror [7, 8]. As
shown in Figure 1a, the electric field amplitude of the fundamental mode is mainly
located in the core. Exponentially decaying oscillations in the cladding come from the
PBG effect and are related to antiresonance of the high-n layers. The oscillating field
outside the periodic cladding implies confinement loss. The goal of the design stage is
to optimize the index profile so that a modal discrimination occurs thanks to differential
modal confinement loss.
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Figure 1. (a) Index profile and electric field amplitude of a cylindrical PBGF. (b) Confinement
loss computed for LP01 (filled signs) and LP11 (hollow signs) for R D 10 �m.

The design parameters are the core diameter 2R, the core index contrast �ncore, the
cladding index contrast �n, the high-n layers’ thickness d , the period ƒ of the cladding
and the number N of high-n layers. The core parameters (R, �ncore) determine the
modal propagation constant in the core. The periodic cladding must then be optimised
for efficient reflection of this peculiar mode. This dictates d and ƒ. It was shown that a
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�ncore D 0 allows a better modal discrimination. Thus, once the core diameter is fixed
(e.g., R > 10 �m for LMA operation at � D 1 �m), design space reduces to f�n; N g.
Figure 1b plots the confinement loss for LP01 and LP11 modes as a function of N for
various �n when the fiber core is 20-�m in diameter. For N D 3 and �n D 0:015,
a very large mode discrimination is obtained, leading to an asymptotically single-mode
fiber. These parameters were used to fabricate a fiber.

2.2. Experimental Results

The fiber was fabricated at the ICHPS and FORC. The refractive index profile of the
fiber is shown in Figure 2a. The core is highly Yb3C-doped with 10,000 ppm by weight.

2.3. Continuous Wave Regime

The fiber was inserted in a laser cavity and the fiber laser was operated in cw regime [9].
Figure 2b shows the emitted power versus the launched pump power together with the
emitted beam. The slope efficiency measured versus the absorbed pump power reaches
84%, a value similar to the state of the art. As shown in inset, the fiber is single-mode
either when it is straight or wound onto a 7.5-cm radius reel.

2.4. Pulsed Regime

Mode-locked single-mode rare-earth-doped fiber lasers are nowadays routinely operated
and are entering the market to address real world applications. However, peak power and
pulse energy scaling of mode-locked fiber lasers is not as straightforward as in their bulky
counterparts. Nonlinear effects avoid self-consistent pulse evolution inside a fiber laser
resonator and hinder the pursuit of higher pulse energies. We realized a mode-locked
fiber laser based on the LMA bandgap fiber. The second order group velocity dispersion
of the fiber was estimated to be about 0.019 ps2/m. The laser cavity is mounted in
a sigma configuration by using a polarization-sensitive optical isolator. Passive mode-
locking is achieved using a fast SEmiconductor Saturable Absorber Mirror (SESAM)
introduced in the sigma branch. Mode-locking is obtained by optimizing the saturation
criteria on the saturable absorber, using an adequate focusing lens. The total cavity
length is about 4.3 m, resulting in a repetition rate of 58 MHz. In this configuration, the
laser started in a Q-switched mode-locking state at an average power of 100 mW. By
increasing the pump power, stable mode locking was obtained at an output average power
of 220 mW. Figure 3a shows the typical optical spectrum obtained for an output average
power of 232 mW, which corresponds to energy per pulse of 4 nJ. The autocorrelation
measurements show that the pulse duration is 3.5 ps, assuming a Gaussian pulse shape
(Figure 3b). The output pulses are extra-cavity dechirped to 1.3 ps duration by using
bulk gratings (see inset in Figure 3b). The time-bandwidth product is about 0.72. It is
1.6 times higher than the Fourier-transform limit. This indicates that the output pulses
suffer from an amount of nonlinear chirp. By increasing pump power, the mode-locking
regime remains stable for output average powers higher than 350 mW (6 nJ). These
preliminary results show that ytterbium-doped large-mode-area bandgap fibers present
real potentialities for energy scaling in mode-locked fiber lasers.

The output power could be increased by enhancing the angle cleaving of the output
end facet.
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Figure 2. (a) Index profile of fabricated Yb3C-doped PBGF. (b) Output power as a function of
the launched pump power for the straight fiber. Inset: Beam profile observed at the output end of
the straight and wound fiber.

2.5. Conclusions and Prospects

High-power bandgap fiber laser was operated in the cw regime. A peculiar feature of this
fiber architecture is the relative bend insensitivity. A mode-locked fiber laser was also
constructed, exhibiting ps pulses with few nJ energy, only limited by technical issues.
Upscaling of the output power may be reached by modifying the fiber design. Design
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Figure 3. (a) Typical output optical spectrum. (b) Autocorrelation trace of the output pulses. Inset:
Autocorrelation trace of the dechirped pulse.

rules show that a 50-�m core fiber can be designed to operate in the single-mode regime.
Other attracting features of the PBGF such as self-spectral filtering could be used in fiber
lasers (lasing at short wavelength or stimulated-Raman-scattering suppression).

3. Fiber with Large and Highly Rare Earth Doped Core
and Resonant Cladding

As mentioned above, nonlinear impairments can be drastically reduced by shortening the
laser medium. For a given output power level, the higher the rare earth ion concentration,
the shorter the fiber length. On the other hand, for a given length of fiber, the higher the
rare earth ion concentration, the higher the output power level. However, increasing the
rare earth concentration is obtained at the cost of a high aluminium content, i.e., a higher
core index contrast and thus a larger number of modes. In order to relax the constraints
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applied on the rare earth concentration, we propose to tailor the refractive index profile
of a microstructured cladding.

3.1. Design Examples

The canonical form of the transverse index profile is shown in Figure 4a whereas a
detailed radial index profile is shown in Figure 4b. The fiber is composed of a highly
multimode core (diameter 2R, index contrast �ncore) surrounded by a periodic cladding
composed of a two-dimensional array of high-n rods (diameter d , maximum index
contrast �n, number of layers N ). The high-n rods may exhibit either a parabolic-
or a step-index-like index profile. A core diameter as large as possible is sought for.
For instance, 2R D 25 �m is a reasonable value for a LMA fiber laser operated at
1-�m wavelength. Moreover, �ncore D 10�2 authorizes an Yb3C concentration as high
as 4 wt % (40,000 ppm-wt).

Such a core, when surrounded by homogeneous pure-silica cladding, supports a very
large number of modes. However, a properly designed cladding can support modes likely
to couple to core modes at various phase-matching wavelengths. In such a case, some
core modes spread out the core. Thus, the overlap factor between the considered mode
and the gain medium drastically decreases leading to a poor amplification of the mode.
On the other hand, an uncoupled core mode, e.g., the fundamental one, can be tightly

Figure 4. Schematic representation of the transverse section of the fiber with large and highly
rare-earth doped core and resonant cladding. (b) Radial index profile along the direction � D 0.
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confined in the core and efficiently amplified. Finally, such a fiber can allow amplification
of a single mode. According to coupled mode theory, both phase matching and overlap
factor between coupled modes must be considered. The effective index (neff ) curves
of various core modes and of various cladding modes have been computed versus the
normalized wavelength (�=ƒ) and plotted in Figure 5a. Due to the periodic nature of
the cladding, cladding modes gathers into bands. At specific wavelengths where core and
cladding modes have the same effective index, phase-matching conditions are fulfilled.
As shown in Figure 5a, phase-matching conditions cannot be fulfilled for all core modes
simultaneously. On the other hand, for a core mode to be coupled to the cladding modes,
overlap integral must be non-zero. The fraction of electric field in the core (Fc) has
been computed and plotted in Figure 5b for the first nine modes of the isolated core
(N D 0). The modal confinement and thus Fc decreases with increasing mode order.
Consequently, overlap integrals are non-zero even in absence of phase matching. Hence,

Figure 5. Theoretical results related to the fiber with core: 2R D 25 �m, �ncore D 10�2, parabolic
rods: �n D 16 10�3, d D 20 �m, ƒ D 22 �m. (a) Effective index curves of core modes (black)
and cladding modes (grey). (b) Overlap factor versus the mode order for the core surrounded by
pure silica .N D 0/ and by 4 layers of inclusions .N D 4/. Results obtained with a heterostructure
in the cladding are also shown.
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far from the phase matching, efficient coupling of higher order modes of the core to the
cladding modes can occur. This is exemplified in Figure 5b for four cladding layers made
of graded index inclusions (black squares, �n D 16 10�3) where it is shown that Fc is
lower than 75% for all core modes but the fundamental one (87%) whereas, without the
tailored cladding, eight high-order core modes exhibit Fc > 75%.

The fifth core mode (LP3;1), located in between the cladding bands, is the least
affected and is likely to be emitted in the laser configuration. To overcome this problem,
design improvement can be brought. In order to bridge the gap between bands, cladding
can be divided in two different microstructures composed of two different kinds of
inclusions. The band diagram of the second microstructure is slightly different from that
of the first one, leading to a broader set of cladding modes. Consequently, slightly coupled
modes in the first configuration become strongly coupled and Fc drops down to 70% for
all high-order core modes as shown in Figure 5b (grey triangles).

From a practical point of view, such a complex structure must be fabricated using the
stack and draw technique. The rare earth doped rod is extracted from a MCVD preform
with diameter smaller than 2 mm. For a seven missing rod core, such a rare earth doped
rod should be stacked with high refractive index rods smaller than 700 �m in diameter
that greatly complicates the process of stacking and accurately maintaining the rods. A
second design has been proposed to facilitate the manufacturing process based on a single
missing rod. The optimized fiber was fabricated and fully characterized.

3.2. Experimental Results

An optimized fiber was fabricated upon the theoretical considerations and the opto-
geometrical parameters of existing preforms. Parameters of the Yb3C-doped core are
2R D 25 �m, �ncore D 5:5 10�3, [Yb3C] D 2,500 ppm-wt. The core surrounded by pure
silica should propagate 13 modes. For the high-order modes to spread out from the core, a
2-layer periodic cladding of graded index rods (�n D 17:5 10�3) was optimized. Modal
overlap factors were computed for various inclusions’ diameters and center-to-center
spacings. Opto-geometrical parameters of the cladding are d D 20 �m, ƒ D 22 �m.
The fiber was then fabricated by the stack and draw technique. An optical microscope
image of the cross-section is shown in Figure 6a. The core and surrounding rods exhibit
hexagonal shape due to the expected deformations occurring during the drawing process.

Figure 6. (a) Optical microscope image of the cross section of the fabricated fiber. (b) Transverse
intensity distribution of the output laser beam.
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The 390 �m outer diameter fiber has a circular shape, not suitable for highly efficient
cladding pumping. However, this does not impact on the modal filtering. A 4.5 W pump
beam was launched into the cladding of a 1.35 m long sample of fiber and the optical
feedback was operated by the cleaved end faces of the fiber. As shown in Figure 6b, the
robust single mode emission is obtained although the laser mode is a second-order mode
(TE01). Indeed, within the gain region of ytterbium, this mode propagates with lower
loss than the fundamental mode. Despite the fact that the effective indices are not very
sensitive to the shape of the rods, the hexagonal shape is expected to be responsible for
a slight shift of phase matching conditions, favoring the TE01 mode. For the emission
of the single fundamental mode, a shift of coupling properties can be simply achieved
by drawing the fiber with a suitable outer diameter that must be determined by accurate
computations taking into account the actual cross section of the fiber. Such samples of
fiber must be drawn to fully demonstrate the interest of the proposed fiber design for
high quality high power laser beam emission.

3.3. Conclusions and Prospects

The emission of a single mode from a highly multimode core was experimentally
demonstrated in the continuous wave laser regime. The theoretical principle underlying
the modal filtering effect is based on the interaction between the multimode core and
a tailored cladding composed of high-index rods. High order modes of the rare earth
doped core spread out of the core and gain competition during laser operation leads to
the suppression of all modes exhibiting a small overlap with the gain medium.

The experimental results demonstrate the feasibility of such a complex structure but
it must be improved to reach high power level of emitted power. On the one hand, the
ytterbium concentration must be increased to 4 wt% or more. On the other hand, emission
of fundamental mode has to be achieved to fully demonstrate the concept.

Conclusions

In conclusion, two strategies to overcome limitations of fiber lasers in terms of output
power and beam quality were proposed. Both strategies require a thorough optimization
of fiber periodic cladding to suppress unwanted high-order modes. On the one hand,
a photonic bandgap fiber was successfully fabricated. A LP01-single-mode fiber laser
was built in the cw and pulsed regimes. On the other hand, a two-dimensional periodic
cladding was shown to efficiently couple high-order modes from the core to the cladding,
leading to an efficient modal discrimination by the gain. A LP11-single-mode fiber laser
was built in the cw regime.
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